

Optimisation of variable thickness composite structures with continuous design variables

<u>M. Bruyneel</u>, GDTech & University of Liège, Belgium P. Duysinx, University of Liège, Belgium S. Grihon, Airbus Toulouse, France

- Problem statement
- Material parameterization
- Optimization algorithm
- Design rules constraints
- Ply continuity constraint
- Generalization
- Conclusions

- Problem statement
- Material parameterization
- Optimization algorithm
- Design rules constraints
- Ply continuity constraint
- Generalization
- Conclusions

Problem statement

Selection of fibers orientation

- Which fiber orientation should I define in ply *k* of region *r*?
- Knowing that conventional orientation (0°, -45°, 45°, 90°) must be used
- Knowing that design rules must be taken into account
- Knowing that manufacturing constraint (ply drop/ply continuity) exists

- Problem statement
- Material parameterization
- Optimization algorithm
- Design rules constraints
- Ply continuity constraint
- Generalization
- Conclusions

- By nature, discrete design variables
- Here, the problem is transformed to play with continuous design variables
 - Specific parameterization of the material stiffness matrix
 - Here, 4 candidate materials (0°,45°,-45°,90°)

- Conventional orientations are used: -45°, 0°, 45°, 90°
 - By nature, discrete design variables
 - Here, the problem is transformed to play with continuous design variables
 - Specific parameterization of the material stiffness matrix
 - Here, 4 candidate materials (0°,45°,-45°,90°)

$$\boldsymbol{\sigma}^{k} = \mathbf{C}^{k} \boldsymbol{\varepsilon}^{k}$$

$$\mathbf{C}^{k} = w_{1}^{k} \mathbf{C}_{-45}^{k} + w_{2}^{k} \mathbf{C}_{0}^{k} + w_{3}^{k} \mathbf{C}_{45}^{k} + w_{4}^{k} \mathbf{C}_{90}^{k}$$

$$\sum_{i=1}^{n^k} w_i^k = 1$$

$$0 \le w_i^k \le 1 \qquad i = 1, \dots, n^k$$

- Key issue: definition of the weighting functions w_i in $\mathbf{C}^k = \sum_{i=1}^{n^k} w_i^k \mathbf{C}_i^k$
- In the literature:
 - DMO (Discrete Material Optimization) by Lund & co-workers (from 2005)
 - n design variables if n candidate materials

- Key issue: definition of the weighting functions w_i in $\mathbf{C}^k = \sum_{i=1}^{n^k} w_i^k \mathbf{C}_i^k$
- In the literature:
 - SFP (Shape Function Parameterization) by Bruyneel (2011)
 - Here for 4 candidate materials, but possible extension to more (or less) materials
 - 2 design variables for 4 candidate materials

- Key issue: definition of the weighting functions w_i in $\mathbf{C}^k = \sum_{i=1}^{n^k} w_i^k \mathbf{C}_i^k$
- In the literature:
 - SFP (Shape Function Parameterization) by Bruyneel (2011)
 - Here for 4 candidate materials, but possible extension to more (or less) materials

Avoid mixture

of materials

- 2 design variables for 4 candidate materials

SFP: SF with penalization

- Key issue: definition of the weighting functions w_i in $\mathbf{C}^k = \sum_{i=1}^{n^k} w_i^k \mathbf{C}_i^k$
- In the literature:
 - SFP (Shape Function Parameterization) by Bruyneel (2011)
 - Here for 4 candidate materials, but possible extension to more (or less) materials
 - 2 design variables for 4 candidate materials

SFP: SF with penalization

Similar to topology optimization (SIMP approach: $E=\mu^{p}E_{0}$ and $\rho=\mu\rho_{0}$)

- Problem statement
- Material parameterization
- Optimization algorithm
- Design rules constraints
- Ply continuity constraint
- Generalization
- Conclusions

Optimizer for continuous design variables

- Sequential Convex Programming approach (SCP)

- Approximation concept approach
- Gradient-based optimization method
- Based on specific/tailored Taylor series expansions

Optimizer for continuous design variables

- Sequential Convex Programming approach (SCP)
 - Approximation used here: extension of Method of Moving Asymptotes (Bruyneel, Duysinx & Fleury, 2002)

$$\widetilde{g}_{j}^{(k)}(\mathbf{x}) = g_{j}(\mathbf{x}^{(k)}) + \sum_{i \in A} p_{ij}^{(k)} \left(\frac{1}{U_{i}^{(k)} - x_{i}} - \frac{1}{U_{i}^{(k)} - x_{i}^{(k)}} \right) + \sum_{i \in A} q_{ij}^{(k)} \left(\frac{1}{x_{i} - L_{i}^{(k)}} - \frac{1}{x_{i}^{(k)} - L_{i}^{(k)}} \right) + \sum_{+,i \in B} p_{ij}^{(k)} \left(\frac{1}{U_{i}^{(k)} - x_{i}} - \frac{1}{U_{i}^{(k)} - x_{i}^{(k)}} \right) + \sum_{-,i \in B} q_{ij}^{(k)} \left(\frac{1}{x_{i} - L_{i}^{(k)}} - \frac{1}{x_{i}^{(k)} - L_{i}^{(k)}} \right) + \sum_{-,i \in B} q_{ij}^{(k)} \left(\frac{1}{x_{i} - L_{i}^{(k)}} - \frac{1}{x_{i}^{(k)} - L_{i}^{(k)}} \right) + \sum_{-,i \in B} q_{ij}^{(k)} \left(\frac{1}{x_{i} - L_{i}^{(k)}} - \frac{1}{x_{i}^{(k)} - L_{i}^{(k)}} \right) + \sum_{-,i \in B} q_{ij}^{(k)} \left(\frac{1}{x_{i} - L_{i}^{(k)}} - \frac{1}{x_{i}^{(k)} - L_{i}^{(k)}} \right) + \sum_{-,i \in B} q_{ij}^{(k)} \left(\frac{1}{x_{i} - L_{i}^{(k)}} - \frac{1}{x_{i}^{(k)} - L_{i}^{(k)}} \right) + \sum_{-,i \in B} q_{ij}^{(k)} \left(\frac{1}{x_{i} - L_{i}^{(k)}} - \frac{1}{x_{i}^{(k)} - L_{i}^{(k)}} \right) + \sum_{-,i \in B} q_{ij}^{(k)} \left(\frac{1}{x_{i} - L_{i}^{(k)}} - \frac{1}{x_{i}^{(k)} - L_{i}^{(k)}} \right) + \sum_{-,i \in B} q_{ij}^{(k)} \left(\frac{1}{x_{i} - L_{i}^{(k)}} - \frac{1}{x_{i}^{(k)} - L_{i}^{(k)}} \right) + \sum_{-,i \in B} q_{ij}^{(k)} \left(\frac{1}{x_{i} - L_{i}^{(k)}} - \frac{1}{x_{i}^{(k)} - L_{i}^{(k)}} \right) + \sum_{-,i \in B} q_{ij}^{(k)} \left(\frac{1}{x_{i} - L_{i}^{(k)}} - \frac{1}{x_{i}^{(k)} - L_{i}^{(k)}} \right) + \sum_{-,i \in B} q_{ij}^{(k)} \left(\frac{1}{x_{i} - L_{i}^{(k)}} - \frac{1}{x_{i}^{(k)} - L_{i}^{(k)}} \right) + \sum_{-,i \in B} q_{ij}^{(k)} \left(\frac{1}{x_{i} - L_{i}^{(k)}} - \frac{1}{x_{i}^{(k)} - L_{i}^{(k)}} \right) + \sum_{-,i \in B} q_{ij}^{(k)} \left(\frac{1}{x_{i} - L_{i}^{(k)}} - \frac{1}{x_{i}^{(k)} - L_{i}^{(k)}} \right) + \sum_{-,i \in B} q_{ij}^{(k)} \left(\frac{1}{x_{i} - L_{i}^{(k)}} - \frac{1}{x_{i}^{(k)} - L_{i}^{(k)}} \right) + \sum_{-,i \in B} q_{ij}^{(k)} \left(\frac{1}{x_{i} - L_{i}^{(k)}} - \frac{1}{x_{i}^{(k)} - L_{i}^{(k)} -$$

Illustration

- Problem statement
- Material parameterization
- Optimization algorithm
- Design rules constraints
- Ply continuity constraint
- Generalization
- Conclusions

- Stacking sequence optimization with design rules
 - Specific design rules for conventional orientations
 - (R1) Minimum percentage of each orientation
 - (R2) Balanced lay-up (same number of plies at 45° and -45°)
 - (R3) Symmetric laminate
 - (R4) No more than Nmax successive plies with the same angle
 - (R5) Maximum gap between two adjacent (superposed) plies is 45°

-45°	
-45°	0°
-45°	90°
-45°	
	1

Some configurations which are not allowed $(N^{max} = 3)$

- Stacking sequence optimization with design rules
 - Illustration for design rule R1: Minimum percentage of each orientation

For orientations only
$$\underline{\xi}_{j} \leq \sum_{k=1}^{n} w_{j}^{(k)} \leq \overline{\xi}_{j}$$
 $j = 1, ..., 4$
Example for 0°: $\underline{\xi}_{0^{\circ}} \leq \sum_{k=1}^{n} w_{0^{\circ}}^{(k)} \leq \overline{\xi}_{0^{\circ}}$ with $\underline{\xi}_{0^{\circ}} = 0.1n$ $\overline{\xi}_{0^{\circ}} = 0.5n$

For orientations and topology optimization

$$\underline{\xi}_{j} \leq \sum_{k=1}^{n/2} \mu^{(k)} W_{j}^{(k)} \leq \overline{\xi}_{j} \quad j = 1, ..., 4$$

• Illustration for design rule R2: Balanced lay-up (same number of plies at 45°/-45°)

$$\left(\sum_{k=1}^{n} w_1^{(k)} - \sum_{k=1}^{n} w_3^{(k)}\right)^2 \le 0$$

- Application 1

Maximize the first buckling load factor λ_1

Design rules taken into account

Thickness = 20 plies (symmetric)

- (R1) Minimum percentage of each orientation
- (R2) Balanced lay-up (same numb. of plies at 45°/-45°)
- (R3) Symmetric laminate
- (R4) Less than Nmax successive plies with the same angle
- (R5) Maximum gap between two adjacent plies is 45°

Design rules	Iterations	$\begin{array}{c} \textbf{Relative} \\ \lambda_1 \end{array}$	Stacking sequence
R3	4	1.00	[0 ₁₀] _s
R3,R4	18	0.82	[0 ₂ /90/0 ₃ /90/0 ₂ /90] _s
R1,R2,R3,R4	40	0.78	[0 ₃ /90/ 0/90/-45/45 ₂ /-45] _s
R1,R2,R3,R4,R5	27	0.72	[0 ₂ /-45 ₂ /0 ₂ /(45/90) ₂] _s

– Application 2

Minimize the compliance

Design rules taken into account

Thickness = 20 plies (symmetric)

Remove 4 plies : use of topology design

variables for

(R1) Minimum percentage of each orientation

- (R2) Balanced lay-up (same numb. of plies at 45°/-45°)
- (R3) Symmetric laminate

(R4) Less than Nmax successive plies with the same angle

(R5) Maximum gap between two adjacent plies is 45°

s for each ply $(\mu^{(k)})$	Design rules taken into account	Resulting stacking sequences	Number of iterations
Uniform prossure	R1, R3	(45 ₄ /-45 ₂ /0/90/_/_) _s	45
Uniform pressure	R2, R3	(45 ₄ /-45 ₄ /_/_) _s	23
	R1, R2, R3	(45 ₃ /-45 ₂ /90/0/-45/_/_) _s	32
	R1, R3, R4	(45 ₂ /-45/45/-45/0 ₂ /90/_/_) _s	30
	R3, R4, R5	(45 ₂ /90 ₂ /45 ₃ /90/_/_) _s	33
	R1, R2, R3, R4	(45 ₂ /90/45/-45 ₂ /0/-45/_/_) _s	28
	R2, R3, R4, R5	(45 ₃ /90/-45 ₂ /0/-45/_/_) _s	43
	R1, R2, R3, R4, R5	(45 ₃ /0/-45 ₃ /90/_/_) _s	32

- Problem statement
- Material parameterization
- Optimization algorithm
- Design rules constraints
- Ply continuity constraint
- Generalization
- Conclusions

Ply continuity constraint

- Variable thickness optimization

Maximize the stiffness (bending)

Design rules taken into account

Thickness = 20 plies

Keep 16 plies in region 1

Keep 14 plies in region 2

μ_{1_1}

 μ_{10_1}

Pli 10 Zone 1	Pli 10 Zone 2 μ_{10} ;
Pli 9 Zone 1	Pli 9 Zone 2
Pli 8 Zone 1	Pli 8 Zone 2
Pli 7 Zone 1	Pli 7 Zone 2
Pli 6 Zone 1	Pli 6 Zone 2
Pli 5 Zone 1	Pli 5 Zone 2
Pli 4 Zone 1	Pli 4 Zone 2
Pli 3 Zone 1	Pli 3 Zone 2
Pli 2 Zone 1	Pli 2 Zone 2
Pli 1 Zone 1	Pli 1 Zone 2 μ_{1_2}
Presence or	Presence or
absence of a ply	absence of a ply at
at the solution, in	the solution, in
region 1	region 2

Ply continuity constraint

- Variable thickness optimization

Solution found

Ply 8 removed from the two regions Ply 5 removed from region 1 Plies 9 and 10 removed from region 2

Pli 10 Zone 1	-45°		Pli 10 Zone 2
Pli 9 Zone 1	90°		Pli 9 Zone 2
Pli 8 Zone 1			Pli 8 Zone 2
Pli 7 Zone 1	90°	90°	Pli 7 Zone 2
Pli 6 Zone 1	-45°	-45°	Pli 6 Zone 2
Pli 5 Zone 1		-45°	Pli 5 Zone 2
Pli 4 Zone 1	0°	0°	Pli 4 Zone 2
Pli 3 Zone 1	0°	0°	Pli 3 Zone 2
Pli 2 Zone 1	45°	45°	Pli 2 Zone 2
Pli 1 Zone 1	45°	45°	Pli 1 Zone 2

Pli 10 Zone 1	-45°	/ 90°	Pli 7 Zone 2
Pli 9 Zone 1	90° 🖊	∕ -45°	Pli 6 Zone 2
Pli 7 Zone 1	90° /	/-45°	Pli 5 Zone 2
Pli 6 Zone 1	-45° /	0°	Pli 4 Zone 2
Pli 4 Zone 1	0°	0°	Pli 3 Zone 2
Pli 3 Zone 1	0°	45°	Pli 2 Zone 2
Pli 2 Zone 1	45°	45°	Pli 1 Zone 2
Pli 1 Zone 1	45°		

Ply continuity constraint

Variable thickness optimization

- Solution found
 - (R1) Minimum percentage of each orientation
 - (R2) Balanced lay-up (same number of plies at 45° and -45°)
 - (R3) Symmetric laminate
 - (R4) No more than Nmax successive plies with the same angle
 - (R5) Maximum gap between two adjacent (superposed) plies is 45°

Design rules	Resulting stacking	Resulting stacking
taken into account	sequences in zone 1	sequences in zone 2
R1, R3	(45 ₂ /0/45/-45 ₂ /90/-45/_/_) _s	(45 ₂ /0/45/-45 ₂ /90/_/_/_) _s
R2, R3	(45 ₄ /_/_/-45 ₄) _s	(45 ₃ /_/-45/0/-45 ₂ /_/_) _s
R5, R3	(45 ₃ /0 ₂ /-45 ₂ /0/_/_) _s	(45 ₃ /0 ₂ /-45 ₂ /_/_) _s
R1, R3, R4	(45 ₂ /_/45/-45/0/-45/0/_/90) _s	(45 ₂ /90/45/-45/0/-45/_/_/_) _s
R1, R2, R3, R4, R5	(45 ₂ /0 ₂ /_/-45/90/_/90/-45) _s	(45 ₂ /0 ₂ /-45 ₂ /90/_/_/_) _s

- Problem statement
- Material parameterization
- Optimization algorithm
- Design rules constraints
- Ply continuity constraint
- Generalization
- Conclusions

- Extension to n candidate materials and sublaminates

- GSFP = generalized SFP
 - Use of the Washpress shape function (Polygonal shape functions)
 - 2 design variables for n candidate materials

$$w_i^{\text{GSFP}} = \left(\frac{\alpha_i(\xi)}{\sum_{j=1}^n \alpha_j(\xi)}\right)^p$$

with
$$\alpha_i(\xi) = \frac{1}{A_i(\xi)A_{i+1}(\xi)}$$

- Extension to n candidate materials

0°; 90°; -45°; 45°

- Extension to n candidate materials and sublaminates
 - GSFP = Generalized SFP
 - Application to sublaminates
 - Instead of distributing orientations in each ply, sub-laminates (specified sets of plies) can be distributed in the structure

Sub-laminate number	Candidate sub-laminates	1 2
1	[±45/0 ₂ /90/0 ₂ /90/0 ₂]	
2	[±45/0/90/0/90/0]	
3	[±45/0/90/0]	6 3
4	[±45/0/90]	
5	[±45/90/0/90/0/90]	
6	[±45/90 ₂ /0/90 ₂ /0/90 ₂]	5 🔪 4

- Extension to sublaminates • Illustration on the Delta wing:

- 16 regions
- Selection of the optimal laminate in each region

ation	GDTECH
Region of the Delta wing	Optimal sub-laminate
1	[±45/0 ₂ /90/0 ₂ /90/0 ₂]
2	[±45/0/90/0/90/0]
3	[±45/0/90/0/90/0]
4	[±45/0/90/0/90/0]
5	[±45/90 ₂ /0/90 ₂ /0/90 ₂
6	[±45/0/90/0/90/0]
7	[±45/0/90/0/90/0]
8	[±45/90/0/90/0/90]
9	[±45/0/90/0/90/0]
10	[±45/0/90/0/90/0]
11	[±45/0/90/0]
12	[±45/0/90/0/90/0]
13	[±45/0/90]
14	[±45/0/90/0/90/0]
15	[±45/0/90/0/90/0]
16	[±45/0/90]

- Extension to multi-material topology optimization

2 materials + void Min Compliance Constraint on the total mass $E_2 = 57\% E_1$ $\rho_2 = 50\% \rho_2$

Material 1 : E = 210 E9 ; V_{max} = 20 % Material 2 : E = 150 E9 ; V_{max} = 10 % Material 3 : E = 90 E9 ; V_{max} = 10 % Material 4 : E = 40 E9 ; V_{max} = 10 %

- Problem statement
- Material parameterization
- Optimization algorithm
- Design rules constraints
- Ply continuity constraint
- Generalization
- Conclusions

Conclusions

- Composite structure optimization = difficult task
- It is demonstrated that it's possible to solve the problem with continuous design variables
 - Discrete => continuous thanks to a specific parameterization
 - For conventional orientations (0°, 45°, -45°, 90°)
 - Taking into account the design rules
 - Taking into account the ply continuity constraint
 - Generalization to n candidate materials/orientations
- Application to multi-material topology optimization

Conclusions

- Next step: application to lattice structures
 - different patterns = different materials to distribute
 - Application to Additive Manufacturing

Thank you for your attention Any question?

Michael.bruyneel@gdtech.eu