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Problem statement

• Selection of fibers orientation
• Which fiber orientation should I define in ply k of region r?

• Knowing that conventional orientation (0°, -45°, 45°, 90°) must be used

• Knowing that design rules must be taken into account

• Knowing that manufacturing constraint (ply drop/ply continuity) exists
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Material parameterization

• Conventional orientations are used: -45°, 0°, 45°, 90°
• By nature, discrete design variables

• Here, the problem is transformed to play with continuous design variables

– Specific parameterization of the material stiffness matrix

– Here, 4 candidate materials (0°,45°,-45°,90°)
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Material parameterization

• Conventional orientations are used: -45°, 0°, 45°, 90°
• By nature, discrete design variables

• Here, the problem is transformed to play with continuous design variables

– Specific parameterization of the material stiffness matrix

– Here, 4 candidate materials (0°,45°,-45°,90°)

kkkkkkkkk wwww 90445302451 CCCCC  

kkk εCσ 

1 
1




kn

i

k
iw

10  k
iw kni ,...,1



Material parameterization
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CC– Key issue: definition of the weighting functions wi in

– In the literature:
• DMO (Discrete Material Optimization) by Lund & co-workers (from 2005)

• n design variables if n candidate materials
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Material parameterization

– Key issue: definition of the weighting functions wi in

– In the literature:
• SFP (Shape Function Parameterization) by Bruyneel (2011)

– Here for 4 candidate materials, but possible extension to more (or less) materials

– 2 design variables for 4 candidate materials
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Material parameterization

– Key issue: definition of the weighting functions wi in

– In the literature:
• SFP (Shape Function Parameterization) by Bruyneel (2011)

– Here for 4 candidate materials, but possible extension to more (or less) materials

– 2 design variables for 4 candidate materials

SF: Shape 
Functions
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Material parameterization

– Key issue: definition of the weighting functions wi in

– In the literature:
• SFP (Shape Function Parameterization) by Bruyneel (2011)

– Here for 4 candidate materials, but possible extension to more (or less) materials

– 2 design variables for 4 candidate materials SFP: SF with penalization
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Similar to topology
optimization

(SIMP approach: 
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Optimizer for continuous design variables

– Sequential Convex Programming approach (SCP)
• Approximation concept approach

• Gradient-based optimization method

• Based on specific/tailored Taylor series expansions
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Optimizer for continuous design variables

– Sequential Convex Programming approach (SCP)
• Approximation used here: extension of Method of Moving Asymptotes (Bruyneel, Duysinx 

& Fleury, 2002)
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Illustration

– 16 domains

SFP (p=3)

DMO (p=5)
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Design rules constraints

– Stacking sequence optimization with design rules
• Specific design rules for conventional orientations

(R1) Minimum percentage of each orientation
(R2) Balanced lay-up (same number of plies at 45° and -45°)
(R3) Symmetric laminate
(R4) No more than Nmax successive plies with the same angle
(R5) Maximum gap between two adjacent (superposed) plies is 45°



Design rules constraints

– Stacking sequence optimization with design rules
• Illustration for design rule R1: Minimum percentage of each orientation
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• Illustration for design rule R2: Balanced lay-up (same number of plies at 45°/-45°)
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Design rules constraints

– Application 1
Maximize the first buckling load factor l1

Design rules taken into account

Thickness = 20 plies (symmetric)

(R1) Minimum percentage of each orientation
(R2) Balanced lay-up (same numb. of plies at 45°/-45°)
(R3) Symmetric laminate
(R4) Less than Nmax successive plies with the same angle
(R5) Maximum gap between two adjacent plies is 45°

Design rules Iterations Relative 
l1

Stacking sequence

R3 4 1.00 [010]s

R3,R4 18 0.82 [02/90/ 03/90/02/ 90]s

R1,R2,R3,R4 40 0.78 [03/90/ 0/90/-45/452/-45]s

R1,R2,R3,R4,R5 27 0.72 [02/-452/02/(45/90)2]S



Design rules constraints

– Application 2
Minimize the compliance

Design rules taken into account

Thickness = 20 plies (symmetric)

Remove 4 plies : use of topology design 
variables for each ply (m(k))

Uniform pressure

Design rules taken into 
account

Resulting stacking sequences Number of 
iterations

R1, R3 (454/-452/0/90/_/_)s 45
R2, R3 (454/-454/_/_)s 23

R1, R2, R3 (453/-452/90/0/-45/_/_)s 32
R1, R3, R4 (452/-45/45/-45/02/90/_/_)s 30
R3, R4, R5 (452/902/453/90/_/_)s 33

R1, R2, R3, R4 (452/90/45/-452/0/-45/_/_)s 28
R2, R3, R4, R5 (453/90/-452/0/-45/_/_)s 43

R1, R2, R3, R4, R5 (453/0/-453/90/_/_)s 32

(R1) Minimum percentage of each orientation
(R2) Balanced lay-up (same numb. of plies at 45°/-45°)
(R3) Symmetric laminate
(R4) Less than Nmax successive plies with the same angle
(R5) Maximum gap between two adjacent plies is 45°
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Ply continuity constraint

– Variable thickness optimization

Maximize the stiffness (bending)

Design rules taken into account

Thickness = 20 plies

Keep 16 plies in region 1

Keep 14 plies in region 2

m1_1

m10_1

Presence or 
absence of a ply
at the solution, in 
region 1

m1_2

m10_2

Presence or 
absence of a ply at 

the solution, in 
region 2

Specific parameterization (for the ply-drops)



Ply continuity constraint

– Variable thickness optimization
• Solution found

Ply 8 removed from the two regions
Ply 5 removed from region 1
Plies 9 and 10 removed from region 2



Ply continuity constraint

– Variable thickness optimization
• Solution found

Design rules 
taken into account

Resulting stacking 
sequences in zone 1

Resulting stacking 
sequences in zone 2

R1, R3 (452/0/45/-452/90/-45/_/_)s (452/0/45/-452/90/_/_/_)s

R2, R3 (454/_/_/-454)s (453/_/-45/0/-452/_/_)s

R5, R3 (453/02/-452/0/_/_)s (453/02/-452/_/_/_)s

R1, R3, R4 (452/_/45/-45/0/-45/0/_/90)s (452/90/45/-45/0/-45/_/_/_)s

R1, R2, R3, R4, R5 (452/02/_/-45/90/_/90/-45)s (452/02/-452/90/_/_/_)s

(R1) Minimum percentage of each orientation
(R2) Balanced lay-up (same number of plies at 45° and -45°)
(R3) Symmetric laminate
(R4) No more than Nmax successive plies with the same angle
(R5) Maximum gap between two adjacent (superposed) plies is 45°
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Generalization

– Extension to n candidate materials and sublaminates
• GSFP = generalized SFP

– Use of the Washpress shape function (Polygonal shape functions)

– 2 design variables for n candidate materials
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Generalization

– Extension to n candidate materials 

SFP (p=3)
0°; 90°; -45°; 45°

GSFP (p=3)
0°; 60°; 90°;-60°; -30°



Generalization

– Extension to n candidate materials and sublaminates
• GSFP = Generalized SFP

• Application to sublaminates

– Instead of distributing orientations in each ply, sub-laminates (specified sets of plies) 
can be distributed in the structure

Sub-laminate number Candidate sub-laminates
1 [±45/02/90/02/90/02]
2 [±45/0/90/0/90/0]
3 [±45/0/90/0]
4 [±45/0/90]
5 [±45/90/0/90/0/90]
6 [±45/902/0/902/0/902]

1 2

3

45

6



Generalization

– Extension to sublaminates
• Illustration on the Delta wing: 

– 16 regions

– Selection of the optimal laminate in each region

Region of the 
Delta wing

Optimal sub-laminate

1 [±45/02/90/02/90/02]
2 [±45/0/90/0/90/0]
3 [±45/0/90/0/90/0]
4 [±45/0/90/0/90/0]
5 [±45/902/0/902/0/902]
6 [±45/0/90/0/90/0]
7 [±45/0/90/0/90/0]
8 [±45/90/0/90/0/90]
9 [±45/0/90/0/90/0]

10 [±45/0/90/0/90/0]
11 [±45/0/90/0]
12 [±45/0/90/0/90/0]
13 [±45/0/90]
14 [±45/0/90/0/90/0]
15 [±45/0/90/0/90/0]
16 [±45/0/90]



Generalization

– Extension to multi-material topology optimization

2 materials + void
Min Compliance
Constraint on the total mass
E2 = 57% E1
r2 = 50% r2

Material 1 : E = 210 E9 ; Vmax = 20 %
Material 2 : E = 150 E9 ; Vmax = 10 %
Material 3 : E =   90 E9 ; Vmax = 10 %
Material 4 : E =   40 E9 ; Vmax = 10 %
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Conclusions

– Composite structure optimization = difficult task

– It is demonstrated that it’s possible to solve the problem with 
continuous design variables

• Discrete => continuous thanks to a specific parameterization

• For conventional orientations (0°, 45°, -45°, 90°)

• Taking into account the design rules

• Taking into account the ply continuity constraint

• Generalization to n candidate materials/orientations

– Application to multi-material topology optimization



Conclusions

– Next step: application to lattice structures 
• different patterns = different materials to distribute

• Application to Additive Manufacturing



Thank you for your attention
Any question?

Michael.bruyneel@gdtech.eu


